On Bahadur Efficiency of the Maximum Likelihood Estimator in Hidden Markov Models

نویسنده

  • Cheng-Der Fuh
چکیده

In this paper, we study large deviations of maximum likelihood and related estimators for hidden Markov models. A hidden Markov model consists of parameterized Markov chains in a Markovian random environment, with the underlying environmental Markov chain viewed as missing data. A difficulty with parameter estimation in this model is the non-additivity of the log-likelihood function. Based on a device used to represent the likelihood function as the L1-norm of products of Markov random matrices, we investigate the tail probabilities for consistent estimators in hidden Markov models. The main result is that, under some regularity conditions, the maximum likelihood estimator is an asymptotically locally optimal estimator in Bahadur’s sense. The results are applied to several types of hidden Markov models commonly used in speech recognition, molecular biology and economics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Speech enhancement based on hidden Markov model using sparse code shrinkage

This paper presents a new hidden Markov model-based (HMM-based) speech enhancement framework based on the independent component analysis (ICA). We propose analytical procedures for training clean speech and noise models by the Baum re-estimation algorithm and present a Maximum a posterior (MAP) estimator based on Laplace-Gaussian (for clean speech and noise respectively) combination in the HMM ...

متن کامل

Maximum Likelihood Estimator for Hidden Markov Models in Continuous Time

The paper studies large sample asymptotic properties of the Maximum Likelihood Estimator (MLE) for the parameter of a continuous time Markov chain, observed in white noise. Using the method of weak convergence of likelihoods due to I.Ibragimov and R.Khasminskii [14], consistency, asymptotic normality and convergence of moments are established for MLE under certain strong ergodicity conditions o...

متن کامل

Asymptotic Properties of the Maximum Likelihood Estimator in Autoregressive Models with Markov Regime by Randal Douc,1

An autoregressive process with Markov regime is an autoregressive process for which the regression function at each time point is given by a nonobservable Markov chain. In this paper we consider the asymptotic properties of the maximum likelihood estimator in a possibly nonstationary process of this kind for which the hidden state space is compact but not necessarily finite. Consistency and asy...

متن کامل

Computation of Standard Errors for Maximum-likelihood Estimates in Hidden Markov Models

Explicit computation of the score vector and the observed information matrix in hidden Markov models is described. With the help of the information matrix Wald's con dence intervals can be formed for the model parameters. Finite sample properties of the maximum-likelihood estimator and its standard error are investigated by means of simulation studies. We compare the con dence levels of interva...

متن کامل

Finite Sample Properties of the Maximum Likelihood Estimator and of Likelihood Ratio Tests in Hidden Markov Models

Hidden Markov models were successfully applied in various fields of time series analysis, especially for analyzing ion channel recordings. The maximum likelihood estimator (MLE) has recently been proven to be asymptotically normally distributed. Here, we investigate finite sample properties of the MLE and of different types of likelihood ratio tests (LRTs) by means of simulation studies. The ML...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004